Customization basics: tensors and operations

View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook

This is an introductory TensorFlow tutorial that shows how to:

  • Import the required package.
  • Create and use tensors.
  • Use GPU acceleration.
  • Build a data pipeline with tf.data.Dataset.

Import TensorFlow

To get started, import the tensorflow module. As of TensorFlow 2, eager execution is turned on by default. Eager execution enables a more interactive frontend to TensorFlow, which you will later explore in more detail.

import tensorflow as tf
2024-07-19 08:07:36.188387: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-07-19 08:07:36.209898: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-07-19 08:07:36.216247: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered

Tensors

A Tensor is a multi-dimensional array. Similar to NumPy ndarray objects, tf.Tensor objects have a data type and a shape. Additionally, tf.Tensors can reside in accelerator memory (like a GPU). TensorFlow offers a rich library of operations (for example, tf.math.add, tf.linalg.matmul, and tf.linalg.inv) that consume and produce tf.Tensors. These operations automatically convert built-in Python types. For example:

print(tf.math.add(1, 2))
print(tf.math.add([1, 2], [3, 4]))
print(tf.math.square(5))
print(tf.math.reduce_sum([1, 2, 3]))

# Operator overloading is also supported
print(tf.math.square(2) + tf.math.square(3))
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor([4 6], shape=(2,), dtype=int32)
tf.Tensor(25, shape=(), dtype=int32)
tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(13, shape=(), dtype=int32)
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1721376458.838613  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.842450  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.846110  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.849920  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.861682  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.865178  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.868556  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.871927  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.875339  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.878883  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.882189  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376458.885535  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.142651  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.144907  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.146919  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.149068  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.151105  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.153179  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.155099  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.157198  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.159144  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.161210  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.163099  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.165086  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.203638  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.205822  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.207790  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.209857  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.212338  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.214422  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.216330  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.218342  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.220352  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.222938  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.225410  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1721376460.227861  600951 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355

Each tf.Tensor has a shape and a datatype:

x = tf.linalg.matmul([[1]], [[2, 3]])
print(x)
print(x.shape)
print(x.dtype)
tf.Tensor([[2 3]], shape=(1, 2), dtype=int32)
(1, 2)
<dtype: 'int32'>

The most obvious differences between NumPy arrays and tf.Tensors are:

  1. Tensors can be backed by accelerator memory (like GPU, TPU).
  2. Tensors are immutable.

NumPy compatibility

Converting between a TensorFlow tf.Tensor and a NumPy ndarray is easy:

  • TensorFlow operations automatically convert NumPy ndarrays to Tensors.
  • NumPy operations automatically convert Tensors to NumPy ndarrays.

Tensors are explicitly converted to NumPy ndarrays using their .numpy() method. These conversions are typically cheap since the array and tf.Tensor share the underlying memory representation, if possible. However, sharing the underlying representation isn't always possible since the tf.Tensor may be hosted in GPU memory while NumPy arrays are always backed by host memory, and the conversion involves a copy from GPU to host memory.

import numpy as np

ndarray = np.ones([3, 3])

print("TensorFlow operations convert numpy arrays to Tensors automatically")
tensor = tf.math.multiply(ndarray, 42)
print(tensor)


print("And NumPy operations convert Tensors to NumPy arrays automatically")
print(np.add(tensor, 1))

print("The .numpy() method explicitly converts a Tensor to a numpy array")
print(tensor.numpy())
TensorFlow operations convert numpy arrays to Tensors automatically
tf.Tensor(
[[42. 42. 42.]
 [42. 42. 42.]
 [42. 42. 42.]], shape=(3, 3), dtype=float64)
And NumPy operations convert Tensors to NumPy arrays automatically
[[43. 43. 43.]
 [43. 43. 43.]
 [43. 43. 43.]]
The .numpy() method explicitly converts a Tensor to a numpy array
[[42. 42. 42.]
 [42. 42. 42.]
 [42. 42. 42.]]

GPU acceleration

Many TensorFlow operations are accelerated using the GPU for computation. Without any annotations, TensorFlow automatically decides whether to use the GPU or CPU for an operation—copying the tensor between CPU and GPU memory, if necessary. Tensors produced by an operation are typically backed by the memory of the device on which the operation executed. For example:

x = tf.random.uniform([3, 3])

print("Is there a GPU available: "),
print(tf.config.list_physical_devices("GPU"))

print("Is the Tensor on GPU #0:  "),
print(x.device.endswith('GPU:0'))
Is there a GPU available: 
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:2', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:3', device_type='GPU')]
Is the Tensor on GPU #0:  
True

Device names

The Tensor.device property provides a fully qualified string name of the device hosting the contents of the tensor. This name encodes many details, such as an identifier of the network address of the host on which this program is executing and the device within that host. This is required for distributed execution of a TensorFlow program. The string ends with GPU:<N> if the tensor is placed on the N-th GPU on the host.

Explicit device placement

In TensorFlow, placement refers to how individual operations are assigned (placed on) a device for execution. As mentioned, when there is no explicit guidance provided, TensorFlow automatically decides which device to execute an operation and copies tensors to that device, if needed.

However, TensorFlow operations can be explicitly placed on specific devices using the tf.device context manager. For example:

import time

def time_matmul(x):
  start = time.time()
  for loop in range(10):
    tf.linalg.matmul(x, x)

  result = time.time()-start

  print("10 loops: {:0.2f}ms".format(1000*result))

# Force execution on CPU
print("On CPU:")
with tf.device("CPU:0"):
  x = tf.random.uniform([1000, 1000])
  assert x.device.endswith("CPU:0")
  time_matmul(x)

# Force execution on GPU #0 if available
if tf.config.list_physical_devices("GPU"):
  print("On GPU:")
  with tf.device("GPU:0"): # Or GPU:1 for the 2nd GPU, GPU:2 for the 3rd etc.
    x = tf.random.uniform([1000, 1000])
    assert x.device.endswith("GPU:0")
    time_matmul(x)
On CPU:
10 loops: 46.80ms
On GPU:
10 loops: 35.75ms

Datasets

This section uses the tf.data.Dataset API to build a pipeline for feeding data to your model. tf.data.Dataset is used to build performant, complex input pipelines from simple, re-usable pieces that will feed your model's training or evaluation loops. (Refer to the tf.data: Build TensorFlow input pipelines guide to learn more.)

Create a source Dataset

Create a source dataset using one of the factory functions like tf.data.Dataset.from_tensors, tf.data.Dataset.from_tensor_slices, or using objects that read from files like tf.data.TextLineDataset or tf.data.TFRecordDataset. Refer to the Reading input data section of the tf.data: Build TensorFlow input pipelines guide for more information.

ds_tensors = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6])

# Create a CSV file
import tempfile
_, filename = tempfile.mkstemp()

with open(filename, 'w') as f:
  f.write("""Line 1
Line 2
Line 3
  """)

ds_file = tf.data.TextLineDataset(filename)

Apply transformations

Use the transformations functions like tf.data.Dataset.map, tf.data.Dataset.batch, and tf.data.Dataset.shuffle to apply transformations to dataset records.

ds_tensors = ds_tensors.map(tf.math.square).shuffle(2).batch(2)

ds_file = ds_file.batch(2)

Iterate

tf.data.Dataset objects support iteration to loop over records:

print('Elements of ds_tensors:')
for x in ds_tensors:
  print(x)

print('\nElements in ds_file:')
for x in ds_file:
  print(x)
Elements of ds_tensors:
tf.Tensor([4 9], shape=(2,), dtype=int32)
tf.Tensor([16  1], shape=(2,), dtype=int32)
tf.Tensor([36 25], shape=(2,), dtype=int32)

Elements in ds_file:
tf.Tensor([b'Line 1' b'Line 2'], shape=(2,), dtype=string)
tf.Tensor([b'Line 3' b'  '], shape=(2,), dtype=string)