View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
The tf.distribute APIs provide an easy way for users to scale their training from a single machine to multiple machines. When scaling their model, users also have to distribute their input across multiple devices. tf.distribute
provides APIs using which you can automatically distribute your input across devices.
This guide will show you the different ways in which you can create distributed dataset and iterators using tf.distribute
APIs. Additionally, the following topics will be covered:
- Usage, sharding and batching options when using
tf.distribute.Strategy.experimental_distribute_dataset
andtf.distribute.Strategy.distribute_datasets_from_function
. - Different ways in which you can iterate over the distributed dataset.
- Differences between
tf.distribute.Strategy.experimental_distribute_dataset
/tf.distribute.Strategy.distribute_datasets_from_function
APIs andtf.data
APIs as well as any limitations that users may come across in their usage.
This guide does not cover usage of distributed input with Keras APIs.
Distributed datasets
To use tf.distribute
APIs to scale, use tf.data.Dataset
to represent their input. tf.distribute
works efficiently with tf.data.Dataset
—for example, via automatic prefetching onto each accelerator device and regular performance updates. If you have a use case for using something other than tf.data.Dataset
, please refer to the Tensor inputs section in this guide.
In a non-distributed training loop, first create a tf.data.Dataset
instance and then iterate over the elements. For example:
import tensorflow as tf
# Helper libraries
import numpy as np
import os
print(tf.__version__)
2024-07-19 05:30:15.465921: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-07-19 05:30:15.486909: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-07-19 05:30:15.493568: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2.17.0
# Simulate multiple CPUs with virtual devices
N_VIRTUAL_DEVICES = 2
physical_devices = tf.config.list_physical_devices("CPU")
tf.config.set_logical_device_configuration(
physical_devices[0], [tf.config.LogicalDeviceConfiguration() for _ in range(N_VIRTUAL_DEVICES)])
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1721367018.108085 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.111806 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.115296 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.119000 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.130589 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.134235 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.137737 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.141224 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.144708 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.148345 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.151770 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367018.155123 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
print("Available devices:")
for i, device in enumerate(tf.config.list_logical_devices()):
print("%d) %s" % (i, device))
I0000 00:00:1721367019.417249 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 Available devices: 0) LogicalDevice(name='/device:CPU:0', device_type='CPU') 1) LogicalDevice(name='/device:CPU:1', device_type='CPU') 2) LogicalDevice(name='/device:GPU:0', device_type='GPU') 3) LogicalDevice(name='/device:GPU:1', device_type='GPU') 4) LogicalDevice(name='/device:GPU:2', device_type='GPU') 5) LogicalDevice(name='/device:GPU:3', device_type='GPU') I0000 00:00:1721367019.419474 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.421538 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.423554 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.425769 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.427853 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.429803 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.431732 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.433903 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.435991 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.437955 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.439868 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.479178 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.481351 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.483342 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.485297 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.487274 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.489355 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.491315 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.493230 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.495220 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.497797 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.500150 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721367019.502493 106602 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
global_batch_size = 16
# Create a tf.data.Dataset object.
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)
@tf.function
def train_step(inputs):
features, labels = inputs
return labels - 0.3 * features
# Iterate over the dataset using the for..in construct.
for inputs in dataset:
print(train_step(inputs))
tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7] [0.7]], shape=(16, 1), dtype=float32) tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32)
To allow users to use tf.distribute
strategy with minimal changes to a user’s existing code, two APIs were introduced which would distribute a tf.data.Dataset
instance and return a distributed dataset object. A user could then iterate over this distributed dataset instance and train their model as before. Let us now look at the two APIs - tf.distribute.Strategy.experimental_distribute_dataset
and tf.distribute.Strategy.distribute_datasets_from_function
in more detail:
tf.distribute.Strategy.experimental_distribute_dataset
Usage
This API takes a tf.data.Dataset
instance as input and returns a tf.distribute.DistributedDataset
instance. You should batch the input dataset with a value that is equal to the global batch size. This global batch size is the number of samples that you want to process across all devices in 1 step. You can iterate over this distributed dataset in a Pythonic fashion or create an iterator using iter
. The returned object is not a tf.data.Dataset
instance and does not support any other APIs that transform or inspect the dataset in any way.
This is the recommended API if you don’t have specific ways in which you want to shard your input over different replicas.
global_batch_size = 16
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)
# Distribute input using the `experimental_distribute_dataset`.
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
# 1 global batch of data fed to the model in 1 step.
print(next(iter(dist_dataset)))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> })
Properties
Batching
tf.distribute
rebatches the input tf.data.Dataset
instance with a new batch size that is equal to the global batch size divided by the number of replicas in sync. The number of replicas in sync is equal to the number of devices that are taking part in the gradient allreduce during training. When a user calls next
on the distributed iterator, a per replica batch size of data is returned on each replica. The rebatched dataset cardinality will always be a multiple of the number of replicas. Here are a couple of
examples:
tf.data.Dataset.range(6).batch(4, drop_remainder=False)
- Without distribution:
- Batch 1: [0, 1, 2, 3]
- Batch 2: [4, 5]
With distribution over 2 replicas. The last batch ([4, 5]) is split between 2 replicas.
Batch 1:
- Replica 1:[0, 1]
- Replica 2:[2, 3]
Batch 2:
- Replica 1: [4]
- Replica 2: [5]
tf.data.Dataset.range(4).batch(4)
- Without distribution:
- Batch 1: [0, 1, 2, 3]
- With distribution over 5 replicas:
- Batch 1:
- Replica 1: [0]
- Replica 2: [1]
- Replica 3: [2]
- Replica 4: [3]
- Replica 5: []
tf.data.Dataset.range(8).batch(4)
- Without distribution:
- Batch 1: [0, 1, 2, 3]
- Batch 2: [4, 5, 6, 7]
- With distribution over 3 replicas:
- Batch 1:
- Replica 1: [0, 1]
- Replica 2: [2, 3]
- Replica 3: []
- Batch 2:
- Replica 1: [4, 5]
- Replica 2: [6, 7]
- Replica 3: []
Rebatching the dataset has a space complexity that increases linearly with the number of replicas. This means that for the multi-worker training use case the input pipeline can run into OOM errors.
Sharding
tf.distribute
also autoshards the input dataset in multi-worker training with MultiWorkerMirroredStrategy
and TPUStrategy
. Each dataset is created on the CPU device of the worker. Autosharding a dataset over a set of workers means that each worker is assigned a subset of the entire dataset (if the right tf.data.experimental.AutoShardPolicy
is set). This is to ensure that at each step, a global batch size of non-overlapping dataset elements will be processed by each worker. Autosharding has a couple of different options that can be specified using tf.data.experimental.DistributeOptions
. Note that there is no autosharding in multi-worker training with ParameterServerStrategy
, and more information on dataset creation with this strategy can be found in the ParameterServerStrategy tutorial.
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(64).batch(16)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
dataset = dataset.with_options(options)
There are three different options that you can set for the tf.data.experimental.AutoShardPolicy
:
- AUTO: This is the default option which means an attempt will be made to shard by FILE. The attempt to shard by FILE fails if a file-based dataset is not detected.
tf.distribute
will then fall back to sharding by DATA. Note that if the input dataset is file-based but the number of files is less than the number of workers, anInvalidArgumentError
will be raised. If this happens, explicitly set the policy toAutoShardPolicy.DATA
, or split your input source into smaller files such that number of files is greater than number of workers. FILE: This is the option if you want to shard the input files over all the workers. You should use this option if the number of input files is much larger than the number of workers and the data in the files is evenly distributed. The downside of this option is having idle workers if the data in the files is not evenly distributed. If the number of files is less than the number of workers, an
InvalidArgumentError
will be raised. If this happens, explicitly set the policy toAutoShardPolicy.DATA
. For example, let us distribute 2 files over 2 workers with 1 replica each. File 1 contains [0, 1, 2, 3, 4, 5] and File 2 contains [6, 7, 8, 9, 10, 11]. Let the total number of replicas in sync be 2 and global batch size be 4.- Worker 0:
- Batch 1 = Replica 1: [0, 1]
- Batch 2 = Replica 1: [2, 3]
- Batch 3 = Replica 1: [4]
- Batch 4 = Replica 1: [5]
- Worker 1:
- Batch 1 = Replica 2: [6, 7]
- Batch 2 = Replica 2: [8, 9]
- Batch 3 = Replica 2: [10]
- Batch 4 = Replica 2: [11]
DATA: This will autoshard the elements across all the workers. Each of the workers will read the entire dataset and only process the shard assigned to it. All other shards will be discarded. This is generally used if the number of input files is less than the number of workers and you want better sharding of data across all workers. The downside is that the entire dataset will be read on each worker. For example, let us distribute 1 files over 2 workers. File 1 contains [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Let the total number of replicas in sync be 2.
- Worker 0:
- Batch 1 = Replica 1: [0, 1]
- Batch 2 = Replica 1: [4, 5]
- Batch 3 = Replica 1: [8, 9]
- Worker 1:
- Batch 1 = Replica 2: [2, 3]
- Batch 2 = Replica 2: [6, 7]
- Batch 3 = Replica 2: [10, 11]
OFF: If you turn off autosharding, each worker will process all the data. For example, let us distribute 1 files over 2 workers. File 1 contains [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Let the total number of replicas in sync be 2. Then each worker will see the following distribution:
- Worker 0:
- Batch 1 = Replica 1: [0, 1]
- Batch 2 = Replica 1: [2, 3]
- Batch 3 = Replica 1: [4, 5]
- Batch 4 = Replica 1: [6, 7]
- Batch 5 = Replica 1: [8, 9]
Batch 6 = Replica 1: [10, 11]
Worker 1:
Batch 1 = Replica 2: [0, 1]
Batch 2 = Replica 2: [2, 3]
Batch 3 = Replica 2: [4, 5]
Batch 4 = Replica 2: [6, 7]
Batch 5 = Replica 2: [8, 9]
Batch 6 = Replica 2: [10, 11]
Prefetching
By default, tf.distribute
adds a prefetch transformation at the end of the user provided tf.data.Dataset
instance. The argument to the prefetch transformation which is buffer_size
is equal to the number of replicas in sync.
tf.distribute.Strategy.distribute_datasets_from_function
Usage
This API takes an input function and returns a tf.distribute.DistributedDataset
instance. The input function that users pass in has a tf.distribute.InputContext
argument and should return a tf.data.Dataset
instance. With this API, tf.distribute
does not make any further changes to the user’s tf.data.Dataset
instance returned from the input function. It is the responsibility of the user to batch and shard the dataset. tf.distribute
calls the input function on the CPU device of each of the workers. Apart from allowing users to specify their own batching and sharding logic, this API also demonstrates better scalability and performance compared to tf.distribute.Strategy.experimental_distribute_dataset
when used for multi-worker training.
mirrored_strategy = tf.distribute.MirroredStrategy()
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(global_batch_size)
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(64).batch(16)
dataset = dataset.shard(
input_context.num_input_pipelines, input_context.input_pipeline_id)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(2) # This prefetches 2 batches per device.
return dataset
dist_dataset = mirrored_strategy.distribute_datasets_from_function(dataset_fn)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3')
Properties
Batching
The tf.data.Dataset
instance that is the return value of the input function should be batched using the per replica batch size. The per replica batch size is the global batch size divided by the number of replicas that are taking part in sync training. This is because tf.distribute
calls the input function on the CPU device of each of the workers. The dataset that is created on a given worker should be ready to use by all the replicas on that worker.
Sharding
The tf.distribute.InputContext
object that is implicitly passed as an argument to the user’s input function is created by tf.distribute
under the hood. It has information about the number of workers, current worker ID etc. This input function can handle sharding as per policies set by the user using these properties that are part of the tf.distribute.InputContext
object.
Prefetching
tf.distribute
does not add a prefetch transformation at the end of the tf.data.Dataset
returned by the user-provided input function, so you explicitly call Dataset.prefetch
in the example above.
Distributed iterators
Similar to non-distributed tf.data.Dataset
instances, you will need to create an iterator on the tf.distribute.DistributedDataset
instances to iterate over it and access the elements in the tf.distribute.DistributedDataset
.
The following are the ways in which you can create a tf.distribute.DistributedIterator
and use it to train your model:
Usages
Use a Pythonic for loop construct
You can use a user friendly Pythonic loop to iterate over the tf.distribute.DistributedDataset
. The elements returned from the tf.distribute.DistributedIterator
can be a single tf.Tensor
or a tf.distribute.DistributedValues
which contains a value per replica. Placing the loop inside a tf.function
will give a performance boost. However, break
and return
are currently not supported for a loop over a tf.distribute.DistributedDataset
that is placed inside of a tf.function
.
global_batch_size = 16
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
@tf.function
def train_step(inputs):
features, labels = inputs
return labels - 0.3 * features
for x in dist_dataset:
# train_step trains the model using the dataset elements
loss = mirrored_strategy.run(train_step, args=(x,))
print("Loss is ", loss)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor([[0.7]], shape=(1, 1), dtype=float32), 1: tf.Tensor([[0.7]], shape=(1, 1), dtype=float32), 2: tf.Tensor([[0.7]], shape=(1, 1), dtype=float32), 3: tf.Tensor([[0.7]], shape=(1, 1), dtype=float32) }
Use iter
to create an explicit iterator
To iterate over the elements in a tf.distribute.DistributedDataset
instance, you can create a tf.distribute.DistributedIterator
using the iter
API on it. With an explicit iterator, you can iterate for a fixed number of steps. In order to get the next element from an tf.distribute.DistributedIterator
instance dist_iterator
, you can call next(dist_iterator)
, dist_iterator.get_next()
, or dist_iterator.get_next_as_optional()
. The former two are essentially the same:
num_epochs = 10
steps_per_epoch = 5
for epoch in range(num_epochs):
dist_iterator = iter(dist_dataset)
for step in range(steps_per_epoch):
# train_step trains the model using the dataset elements
loss = mirrored_strategy.run(train_step, args=(next(dist_iterator),))
# which is the same as
# loss = mirrored_strategy.run(train_step, args=(dist_iterator.get_next(),))
print("Loss is ", loss)
Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) } Loss is PerReplica:{ 0: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 1: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 2: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32), 3: tf.Tensor( [[0.7] [0.7] [0.7] [0.7]], shape=(4, 1), dtype=float32) }
With next
or tf.distribute.DistributedIterator.get_next
, if the tf.distribute.DistributedIterator
has reached its end, an OutOfRange error will be thrown. The client can catch the error on python side and continue doing other work such as checkpointing and evaluation. However, this will not work if you are using a host training loop (i.e., run multiple steps per tf.function
), which looks like:
@tf.function
def train_fn(iterator):
for _ in tf.range(steps_per_loop):
strategy.run(step_fn, args=(next(iterator),))
This example train_fn
contains multiple steps by wrapping the step body inside a tf.range
. In this case, different iterations in the loop with no dependency could start in parallel, so an OutOfRange error can be triggered in later iterations before the computation of previous iterations finishes. Once an OutOfRange error is thrown, all the ops in the function will be terminated right away. If this is some case that you would like to avoid, an alternative that does not throw an OutOfRange error is tf.distribute.DistributedIterator.get_next_as_optional
. get_next_as_optional
returns a tf.experimental.Optional
which contains the next element or no value if the tf.distribute.DistributedIterator
has reached an end.
# You can break the loop with `get_next_as_optional` by checking if the `Optional` contains a value
global_batch_size = 4
steps_per_loop = 5
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.range(9).batch(global_batch_size)
distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset))
@tf.function
def train_fn(distributed_iterator):
for _ in tf.range(steps_per_loop):
optional_data = distributed_iterator.get_next_as_optional()
if not optional_data.has_value():
break
per_replica_results = strategy.run(lambda x: x, args=(optional_data.get_value(),))
tf.print(strategy.experimental_local_results(per_replica_results))
train_fn(distributed_iterator)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') ([0], [1], [2], [3]) ([4], [5], [6], [7]) ([8], [], [], [])
Using the element_spec
property
If you pass the elements of a distributed dataset to a tf.function
and want a tf.TypeSpec
guarantee, you can specify the input_signature
argument of the tf.function
. The output of a distributed dataset is tf.distribute.DistributedValues
which can represent the input to a single device or multiple devices. To get the tf.TypeSpec
corresponding to this distributed value, you can use tf.distribute.DistributedDataset.element_spec
or tf.distribute.DistributedIterator.element_spec
.
global_batch_size = 16
epochs = 5
steps_per_epoch = 5
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(per_replica_inputs):
def step_fn(inputs):
return 2 * inputs
return mirrored_strategy.run(step_fn, args=(per_replica_inputs,))
for _ in range(epochs):
iterator = iter(dist_dataset)
for _ in range(steps_per_epoch):
output = train_step(next(iterator))
tf.print(output)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }) (PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> }, PerReplica:{ 0: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 1: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 2: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)>, 3: <tf.Tensor: shape=(4, 1), dtype=float32, numpy= array([[1.], [1.], [1.], [1.]], dtype=float32)> })
Data preprocessing
So far, you have learned how to distribute a tf.data.Dataset
. Yet before the data is ready for the model, it needs to be preprocessed, for example by cleansing, transforming, and augmenting it. Two sets of those handy tools are:
Keras preprocessing layers: a set of Keras layers that allow developers to build Keras-native input processing pipelines. Some Keras preprocessing layers contain non-trainable states, which can be set on initialization or
adapt
ed (refer to theadapt
section of the Keras preprocessing layers guide). When distributing stateful preprocessing layers, the states should be replicated to all workers. To use these layers, you can either make them part of the model or apply them to the datasets.TensorFlow Transform (tf.Transform): a library for TensorFlow that allows you to define both instance-level and full-pass data transformation through data preprocessing pipelines. Tensorflow Transform has two phases. The first is the Analyze phase, where the raw training data is analyzed in a full-pass process to compute the statistics needed for the transformations, and the transformation logic is generated as instance-level operations. The second is the Transform phase, where the raw training data is transformed in an instance-level process.
Keras preprocessing layers vs. Tensorflow Transform
Both Tensorflow Transform and Keras preprocessing layers provide a way to split out preprocessing during training and bundle preprocessing with a model during inference, reducing train/serve skew.
Tensorflow Transform, deeply integrated with TFX, provides a scalable map-reduce solution to analyzing and transforming datasets of any size in a job separate from the training pipeline. If you need to run an analysis on a dataset that cannot fit on a single machine, Tensorflow Transform should be your first choice.
Keras preprocessing layers are more geared towards preprocessing applied during training, after reading data from disk. They fit seamlessly with model development in the Keras library. They support analysis of a smaller dataset via adapt
and supports use cases like image data augmentation, where each pass over the input dataset will yield different examples for training.
The two libraries can also be mixed, where Tensorflow Transform is used for analysis and static transformations of input data, and Keras preprocessing layers are used for train-time transformations (e.g., one-hot encoding or data augmentation).
Best Practice with tf.distribute
Working with both tools involves initializing the transformation logic to apply to data, which might create Tensorflow resources. These resources or states should be replicated to all workers to save inter-workers or worker-coordinator communication. To do so, you are recommended to create Keras preprocessing layers, tft.TFTransformOutput.transform_features_layer
, or tft.TransformFeaturesLayer
under tf.distribute.Strategy.scope
, just like you would for any other Keras layers.
The following examples demonstrate usage of the tf.distribute.Strategy
API with the high-level Keras Model.fit
API and with a custom training loop separately.
Extra notes for Keras preprocessing layers users:
Preprocessing layers and large vocabularies
When dealing with large vocabularies (over one gigabyte) in a multi-worker setting (for example, tf.distribute.MultiWorkerMirroredStrategy
, tf.distribute.experimental.ParameterServerStrategy
, tf.distribute.TPUStrategy
), it is recommended to save the vocabulary to a static file accessible from all workers (for example, with Cloud Storage). This will reduce the time spent replicating the vocabulary to all workers during training.
Preprocessing in the tf.data
pipeline versus in the model
While Keras preprocessing layers can be applied either as part of the model or directly to a tf.data.Dataset
, each of the options come with their edge:
- Applying the preprocessing layers within the model makes your model portable, and it helps reduce the training/serving skew. (For more details, refer to the Benefits of doing preprocessing inside the model at inference time section in the Working with preprocessing layers guide)
- Applying within the
tf.data
pipeline allows prefetching or offloading to the CPU, which generally gives better performance when using accelerators.
When running on one or more TPUs, users should almost always place Keras preprocessing layers in the tf.data
pipeline, as not all layers support TPUs, and string ops do not execute on TPUs. (The two exceptions are tf.keras.layers.Normalization
and tf.keras.layers.Rescaling
, which run fine on TPUs and are commonly used as the first layer in an image model.)
Preprocessing with Model.fit
When using Keras Model.fit
, you do not need to distribute data with tf.distribute.Strategy.experimental_distribute_dataset
nor tf.distribute.Strategy.distribute_datasets_from_function
themselves. Check out the Working with preprocessing layers guide and the Distributed training with Keras guide for details. A shortened example may look as below:
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
# Create the layer(s) under scope.
integer_preprocessing_layer = tf.keras.layers.IntegerLookup(vocabulary=FILE_PATH)
model = ...
model.compile(...)
dataset = dataset.map(lambda x, y: (integer_preprocessing_layer(x), y))
model.fit(dataset)
Users of tf.distribute.experimental.ParameterServerStrategy
with the Model.fit
API need to use a tf.keras.utils.experimental.DatasetCreator
as the input. (See the Parameter Server Training guide for more)
strategy = tf.distribute.experimental.ParameterServerStrategy(
cluster_resolver,
variable_partitioner=variable_partitioner)
with strategy.scope():
preprocessing_layer = tf.keras.layers.StringLookup(vocabulary=FILE_PATH)
model = ...
model.compile(...)
def dataset_fn(input_context):
...
dataset = dataset.map(preprocessing_layer)
...
return dataset
dataset_creator = tf.keras.utils.experimental.DatasetCreator(dataset_fn)
model.fit(dataset_creator, epochs=5, steps_per_epoch=20, callbacks=callbacks)
Preprocessing with a custom training loop
When writing a custom training loop, you will distribute your data with either the tf.distribute.Strategy.experimental_distribute_dataset
API or the tf.distribute.Strategy.distribute_datasets_from_function
API. If you distribute your dataset through tf.distribute.Strategy.experimental_distribute_dataset
, applying these preprocessing APIs in your data pipeline will lead the resources automatically co-located with the data pipeline to avoid remote resource access. Thus the examples here will all use tf.distribute.Strategy.distribute_datasets_from_function
, in which case it is crucial to place initialization of these APIs under strategy.scope()
for efficiency:
strategy = tf.distribute.MirroredStrategy()
vocab = ["a", "b", "c", "d", "f"]
with strategy.scope():
# Create the layer(s) under scope.
layer = tf.keras.layers.StringLookup(vocabulary=vocab)
def dataset_fn(input_context):
# a tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices(["a", "c", "e"]).repeat()
# Custom your batching, sharding, prefetching, etc.
global_batch_size = 4
batch_size = input_context.get_per_replica_batch_size(global_batch_size)
dataset = dataset.batch(batch_size)
dataset = dataset.shard(
input_context.num_input_pipelines,
input_context.input_pipeline_id)
# Apply the preprocessing layer(s) to the tf.data.Dataset
def preprocess_with_kpl(input):
return layer(input)
processed_ds = dataset.map(preprocess_with_kpl)
return processed_ds
distributed_dataset = strategy.distribute_datasets_from_function(dataset_fn)
# Print out a few example batches.
distributed_dataset_iterator = iter(distributed_dataset)
for _ in range(3):
print(next(distributed_dataset_iterator))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') PerReplica:{ 0: tf.Tensor([1], shape=(1,), dtype=int64), 1: tf.Tensor([3], shape=(1,), dtype=int64), 2: tf.Tensor([0], shape=(1,), dtype=int64), 3: tf.Tensor([1], shape=(1,), dtype=int64) } PerReplica:{ 0: tf.Tensor([3], shape=(1,), dtype=int64), 1: tf.Tensor([0], shape=(1,), dtype=int64), 2: tf.Tensor([1], shape=(1,), dtype=int64), 3: tf.Tensor([3], shape=(1,), dtype=int64) } PerReplica:{ 0: tf.Tensor([0], shape=(1,), dtype=int64), 1: tf.Tensor([1], shape=(1,), dtype=int64), 2: tf.Tensor([3], shape=(1,), dtype=int64), 3: tf.Tensor([0], shape=(1,), dtype=int64) }
Note that if you are training with tf.distribute.experimental.ParameterServerStrategy
, you'll also call tf.distribute.experimental.coordinator.ClusterCoordinator.create_per_worker_dataset
@tf.function
def per_worker_dataset_fn():
return strategy.distribute_datasets_from_function(dataset_fn)
per_worker_dataset = coordinator.create_per_worker_dataset(per_worker_dataset_fn)
per_worker_iterator = iter(per_worker_dataset)
For Tensorflow Transform, as mentioned above, the Analyze stage is done separately from training and thus omitted here. See the tutorial for a detailed how-to. Usually, this stage includes creating a tf.Transform
preprocessing function and transforming the data in an Apache Beam pipeline with this preprocessing function. At the end of the Analyze stage, the output can be exported as a TensorFlow graph which you can use for both training and serving. Our example covers only the training pipeline part:
with strategy.scope():
# working_dir contains the tf.Transform output.
tf_transform_output = tft.TFTransformOutput(working_dir)
# Loading from working_dir to create a Keras layer for applying the tf.Transform output to data
tft_layer = tf_transform_output.transform_features_layer()
...
def dataset_fn(input_context):
...
dataset.map(tft_layer, num_parallel_calls=tf.data.AUTOTUNE)
...
return dataset
distributed_dataset = strategy.distribute_datasets_from_function(dataset_fn)
Partial batches
Partial batches are encountered when: 1) tf.data.Dataset
instances that users create may contain batch sizes that are not evenly divisible by the number of replicas; or 2) when the cardinality of the dataset instance is not divisible by the batch size. This means that when the dataset is distributed over multiple replicas, the next
call on some iterators will result in an tf.errors.OutOfRangeError
. To handle this use case, tf.distribute
returns dummy batches of batch size 0
on replicas that do not have any more data to process.
For the single-worker case, if the data is not returned by the next
call on the iterator, dummy batches of 0 batch size are created and used along with the real data in the dataset. In the case of partial batches, the last global batch of data will contain real data alongside dummy batches of data. The stopping condition for processing data now checks if any of the replicas have data. If there is no data on any of the replicas, you will get a tf.errors.OutOfRangeError
.
For the multi-worker case, the boolean value representing presence of data on each of the workers is aggregated using cross replica communication and this is used to identify if all the workers have finished processing the distributed dataset. Since this involves cross worker communication there is some performance penalty involved.
Caveats
When using
tf.distribute.Strategy.experimental_distribute_dataset
APIs with a multi-worker setup, you pass atf.data.Dataset
that reads from files. If thetf.data.experimental.AutoShardPolicy
is set toAUTO
orFILE
, the actual per-step batch size may be smaller than the one you defined for the global batch size. This can happen when the remaining elements in the file are less than the global batch size. You can either exhaust the dataset without depending on the number of steps to run, or settf.data.experimental.AutoShardPolicy
toDATA
to work around it.Stateful dataset transformations are currently not supported with
tf.distribute
and any stateful ops that the dataset may have are currently ignored. For example, if your dataset has amap_fn
that usestf.random.uniform
to rotate an image, then you have a dataset graph that depends on state (i.e the random seed) on the local machine where the python process is being executed.Experimental
tf.data.experimental.OptimizationOptions
that are disabled by default can in certain contexts—such as when used together withtf.distribute
—cause a performance degradation. You should only enable them after you validate that they benefit the performance of your workload in a distribute setting.Please refer to this guide for how to optimize your input pipeline with
tf.data
in general. A few additional tips:If you have multiple workers and are using
tf.data.Dataset.list_files
to create a dataset from all files matching one or more glob patterns, remember to set theseed
argument or setshuffle=False
so that each worker shard the file consistently.If your input pipeline includes both shuffling the data on record level and parsing the data, unless the unparsed data is significantly larger than the parsed data (which is usually not the case), shuffle first and then parse, as shown in the following example. This may benefit memory usage and performance.
d = tf.data.Dataset.list_files(pattern, shuffle=False)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.interleave(tf.data.TFRecordDataset,
cycle_length=num_readers, block_length=1)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
tf.data.Dataset.shuffle(buffer_size, seed=None, reshuffle_each_iteration=None)
maintain an internal buffer ofbuffer_size
elements, and thus reducingbuffer_size
could aleviate OOM issue.The order in which the data is processed by the workers when using
tf.distribute.experimental_distribute_dataset
ortf.distribute.distribute_datasets_from_function
is not guaranteed. This is typically required if you are usingtf.distribute
to scale prediction. You can however insert an index for each element in the batch and order outputs accordingly. The following snippet is an example of how to order outputs.
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset_size = 24
batch_size = 6
dataset = tf.data.Dataset.range(dataset_size).enumerate().batch(batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
def predict(index, inputs):
outputs = 2 * inputs
return index, outputs
result = {}
for index, inputs in dist_dataset:
output_index, outputs = mirrored_strategy.run(predict, args=(index, inputs))
indices = list(mirrored_strategy.experimental_local_results(output_index))
rindices = []
for a in indices:
rindices.extend(a.numpy())
outputs = list(mirrored_strategy.experimental_local_results(outputs))
routputs = []
for a in outputs:
routputs.extend(a.numpy())
for i, value in zip(rindices, routputs):
result[i] = value
print(result)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18, 10: 20, 11: 22, 12: 24, 13: 26, 14: 28, 15: 30, 16: 32, 17: 34, 18: 36, 19: 38, 20: 40, 21: 42, 22: 44, 23: 46}
Tensor inputs instead of tf.data
Sometimes users cannot use a tf.data.Dataset
to represent their input and subsequently
the above mentioned APIs to distribute the dataset to multiple devices.
In such cases you can use raw tensors or inputs from a generator.
Use experimental_distribute_values_from_function for arbitrary tensor inputs
strategy.run
accepts tf.distribute.DistributedValues
which is the output of
next(iterator)
. To pass the tensor values, use
tf.distribute.Strategy.experimental_distribute_values_from_function
to construct
tf.distribute.DistributedValues
from raw tensors. The user will have to specify their own batching and sharding logic in the input function with this option, which can be done using the tf.distribute.experimental.ValueContext
input object.
mirrored_strategy = tf.distribute.MirroredStrategy()
def value_fn(ctx):
return tf.constant(ctx.replica_id_in_sync_group)
distributed_values = mirrored_strategy.experimental_distribute_values_from_function(value_fn)
for _ in range(4):
result = mirrored_strategy.run(lambda x: x, args=(distributed_values,))
print(result)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance. PerReplica:{ 0: tf.Tensor(0, shape=(), dtype=int32), 1: tf.Tensor(1, shape=(), dtype=int32), 2: tf.Tensor(2, shape=(), dtype=int32), 3: tf.Tensor(3, shape=(), dtype=int32) } PerReplica:{ 0: tf.Tensor(0, shape=(), dtype=int32), 1: tf.Tensor(1, shape=(), dtype=int32), 2: tf.Tensor(2, shape=(), dtype=int32), 3: tf.Tensor(3, shape=(), dtype=int32) } PerReplica:{ 0: tf.Tensor(0, shape=(), dtype=int32), 1: tf.Tensor(1, shape=(), dtype=int32), 2: tf.Tensor(2, shape=(), dtype=int32), 3: tf.Tensor(3, shape=(), dtype=int32) } PerReplica:{ 0: tf.Tensor(0, shape=(), dtype=int32), 1: tf.Tensor(1, shape=(), dtype=int32), 2: tf.Tensor(2, shape=(), dtype=int32), 3: tf.Tensor(3, shape=(), dtype=int32) }
Use tf.data.Dataset.from_generator if your input is from a generator
If you have a generator function that you want to use, you can create a tf.data.Dataset
instance using the from_generator
API.
mirrored_strategy = tf.distribute.MirroredStrategy()
def input_gen():
while True:
yield np.random.rand(4)
# use Dataset.from_generator
dataset = tf.data.Dataset.from_generator(
input_gen, output_types=(tf.float32), output_shapes=tf.TensorShape([4]))
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
iterator = iter(dist_dataset)
for _ in range(4):
result = mirrored_strategy.run(lambda x: x, args=(next(iterator),))
print(result)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') PerReplica:{ 0: tf.Tensor([0.11637348], shape=(1,), dtype=float32), 1: tf.Tensor([0.08508904], shape=(1,), dtype=float32), 2: tf.Tensor([0.8135633], shape=(1,), dtype=float32), 3: tf.Tensor([0.54760563], shape=(1,), dtype=float32) } PerReplica:{ 0: tf.Tensor([0.30264896], shape=(1,), dtype=float32), 1: tf.Tensor([0.39409903], shape=(1,), dtype=float32), 2: tf.Tensor([0.71737856], shape=(1,), dtype=float32), 3: tf.Tensor([0.16754618], shape=(1,), dtype=float32) } PerReplica:{ 0: tf.Tensor([0.26248282], shape=(1,), dtype=float32), 1: tf.Tensor([0.48110008], shape=(1,), dtype=float32), 2: tf.Tensor([0.84893775], shape=(1,), dtype=float32), 3: tf.Tensor([0.8016228], shape=(1,), dtype=float32) } PerReplica:{ 0: tf.Tensor([0.29518566], shape=(1,), dtype=float32), 1: tf.Tensor([0.18690756], shape=(1,), dtype=float32), 2: tf.Tensor([0.48713174], shape=(1,), dtype=float32), 3: tf.Tensor([0.24948438], shape=(1,), dtype=float32) }