View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
Overview
The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called hyperparameter tuning or hypertuning.
Hyperparameters are the variables that govern the training process and the topology of an ML model. These variables remain constant over the training process and directly impact the performance of your ML program. Hyperparameters are of two types:
- Model hyperparameters which influence model selection such as the number and width of hidden layers
- Algorithm hyperparameters which influence the speed and quality of the learning algorithm such as the learning rate for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier
In this tutorial, you will use the Keras Tuner to perform hypertuning for an image classification application.
Setup
import tensorflow as tf
from tensorflow import keras
2024-07-19 06:58:38.086002: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-07-19 06:58:38.107156: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-07-19 06:58:38.113499: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
Install and import the Keras Tuner.
pip install -q -U keras-tuner
import keras_tuner as kt
Download and prepare the dataset
In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the Fashion MNIST dataset.
Load the data.
(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0
Define the model
When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.
You can define a hypermodel through two approaches:
- By using a model builder function
- By subclassing the
HyperModel
class of the Keras Tuner API
You can also use two pre-defined HyperModel classes - HyperXception and HyperResNet for computer vision applications.
In this tutorial, you use a model builder function to define the image classification model. The model builder function returns a compiled model and uses hyperparameters you define inline to hypertune the model.
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(units=hp_units, activation='relu'))
model.add(keras.layers.Dense(10))
# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
Instantiate the tuner and perform hypertuning
Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch
, Hyperband
, BayesianOptimization
, and Sklearn
. In this tutorial, you use the Hyperband tuner.
To instantiate the Hyperband tuner, you must specify the hypermodel, the objective
to optimize and the maximum number of epochs to train (max_epochs
).
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3,
directory='my_dir',
project_name='intro_to_kt')
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1721372323.169437 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.173231 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.176846 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.180486 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.192249 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.195919 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.199325 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.202798 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.206338 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.209927 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.213330 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372323.216749 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.477920 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.480312 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.482506 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.484612 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.486720 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.488825 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.491313 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.493320 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.495275 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.497366 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.499365 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.501374 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.539926 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.542095 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.544124 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.546152 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.548135 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.550217 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.552224 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.554211 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.556191 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.558764 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.561205 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1721372324.563648 222341 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(**kwargs)
The Hyperband tuning algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports championship style bracket. The algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. Hyperband determines the number of models to train in a bracket by computing 1 + logfactor
(max_epochs
) and rounding it up to the nearest integer.
Create a callback to stop training early after reaching a certain value for the validation loss.
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
Run the hyperparameter search. The arguments for the search method are the same as those used for tf.keras.model.fit
in addition to the callback above.
tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])
# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]
print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
Trial 30 Complete [00h 00m 26s] val_accuracy: 0.8699166774749756 Best val_accuracy So Far: 0.8913333415985107 Total elapsed time: 00h 05m 44s The hyperparameter search is complete. The optimal number of units in the first densely-connected layer is 352 and the optimal learning rate for the optimizer is 0.001.
Train the model
Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.
# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)
val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))
Epoch 1/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.7846 - loss: 0.6243 - val_accuracy: 0.8508 - val_loss: 0.4173 Epoch 2/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8605 - loss: 0.3872 - val_accuracy: 0.8701 - val_loss: 0.3619 Epoch 3/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8748 - loss: 0.3386 - val_accuracy: 0.8681 - val_loss: 0.3571 Epoch 4/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8828 - loss: 0.3124 - val_accuracy: 0.8801 - val_loss: 0.3326 Epoch 5/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8928 - loss: 0.2874 - val_accuracy: 0.8798 - val_loss: 0.3348 Epoch 6/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9007 - loss: 0.2651 - val_accuracy: 0.8861 - val_loss: 0.3172 Epoch 7/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9061 - loss: 0.2535 - val_accuracy: 0.8799 - val_loss: 0.3391 Epoch 8/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9093 - loss: 0.2437 - val_accuracy: 0.8883 - val_loss: 0.3069 Epoch 9/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9141 - loss: 0.2323 - val_accuracy: 0.8818 - val_loss: 0.3382 Epoch 10/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9177 - loss: 0.2196 - val_accuracy: 0.8889 - val_loss: 0.3123 Epoch 11/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9189 - loss: 0.2168 - val_accuracy: 0.8800 - val_loss: 0.3424 Epoch 12/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9227 - loss: 0.2068 - val_accuracy: 0.8888 - val_loss: 0.3263 Epoch 13/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9251 - loss: 0.2003 - val_accuracy: 0.8863 - val_loss: 0.3300 Epoch 14/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9267 - loss: 0.1940 - val_accuracy: 0.8977 - val_loss: 0.3107 Epoch 15/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9321 - loss: 0.1819 - val_accuracy: 0.8874 - val_loss: 0.3321 Epoch 16/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9330 - loss: 0.1815 - val_accuracy: 0.8920 - val_loss: 0.3270 Epoch 17/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9370 - loss: 0.1697 - val_accuracy: 0.8956 - val_loss: 0.3174 Epoch 18/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9396 - loss: 0.1641 - val_accuracy: 0.8931 - val_loss: 0.3355 Epoch 19/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9395 - loss: 0.1599 - val_accuracy: 0.8848 - val_loss: 0.3499 Epoch 20/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9420 - loss: 0.1522 - val_accuracy: 0.8887 - val_loss: 0.3560 Epoch 21/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9450 - loss: 0.1510 - val_accuracy: 0.8917 - val_loss: 0.3503 Epoch 22/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9466 - loss: 0.1441 - val_accuracy: 0.8938 - val_loss: 0.3453 Epoch 23/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9487 - loss: 0.1355 - val_accuracy: 0.8966 - val_loss: 0.3402 Epoch 24/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9483 - loss: 0.1411 - val_accuracy: 0.8862 - val_loss: 0.4028 Epoch 25/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9477 - loss: 0.1378 - val_accuracy: 0.8827 - val_loss: 0.3984 Epoch 26/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9529 - loss: 0.1272 - val_accuracy: 0.8893 - val_loss: 0.3751 Epoch 27/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9532 - loss: 0.1236 - val_accuracy: 0.8976 - val_loss: 0.3747 Epoch 28/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9554 - loss: 0.1210 - val_accuracy: 0.8963 - val_loss: 0.3662 Epoch 29/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9571 - loss: 0.1147 - val_accuracy: 0.8964 - val_loss: 0.3732 Epoch 30/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9555 - loss: 0.1179 - val_accuracy: 0.8962 - val_loss: 0.3855 Epoch 31/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9596 - loss: 0.1131 - val_accuracy: 0.8964 - val_loss: 0.3868 Epoch 32/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9600 - loss: 0.1073 - val_accuracy: 0.8938 - val_loss: 0.3973 Epoch 33/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9608 - loss: 0.1051 - val_accuracy: 0.8932 - val_loss: 0.4068 Epoch 34/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9624 - loss: 0.1020 - val_accuracy: 0.8880 - val_loss: 0.4374 Epoch 35/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9643 - loss: 0.0981 - val_accuracy: 0.8942 - val_loss: 0.4489 Epoch 36/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9626 - loss: 0.0986 - val_accuracy: 0.8953 - val_loss: 0.4259 Epoch 37/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9647 - loss: 0.0963 - val_accuracy: 0.8953 - val_loss: 0.4179 Epoch 38/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9650 - loss: 0.0948 - val_accuracy: 0.8914 - val_loss: 0.4398 Epoch 39/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9654 - loss: 0.0916 - val_accuracy: 0.8932 - val_loss: 0.4391 Epoch 40/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9661 - loss: 0.0901 - val_accuracy: 0.8942 - val_loss: 0.4399 Epoch 41/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9640 - loss: 0.0953 - val_accuracy: 0.8942 - val_loss: 0.4669 Epoch 42/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9680 - loss: 0.0840 - val_accuracy: 0.8919 - val_loss: 0.4535 Epoch 43/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9674 - loss: 0.0880 - val_accuracy: 0.8948 - val_loss: 0.4614 Epoch 44/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9701 - loss: 0.0783 - val_accuracy: 0.8928 - val_loss: 0.4628 Epoch 45/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9686 - loss: 0.0820 - val_accuracy: 0.8925 - val_loss: 0.4754 Epoch 46/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9709 - loss: 0.0778 - val_accuracy: 0.8911 - val_loss: 0.4858 Epoch 47/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9689 - loss: 0.0833 - val_accuracy: 0.8978 - val_loss: 0.4837 Epoch 48/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9729 - loss: 0.0748 - val_accuracy: 0.8932 - val_loss: 0.4866 Epoch 49/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9726 - loss: 0.0731 - val_accuracy: 0.8960 - val_loss: 0.4987 Epoch 50/50 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9720 - loss: 0.0747 - val_accuracy: 0.8912 - val_loss: 0.4967 Best epoch: 47
Re-instantiate the hypermodel and train it with the optimal number of epochs from above.
hypermodel = tuner.hypermodel.build(best_hps)
# Retrain the model
hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)
Epoch 1/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.7795 - loss: 0.6326 - val_accuracy: 0.8463 - val_loss: 0.4114 Epoch 2/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8610 - loss: 0.3837 - val_accuracy: 0.8271 - val_loss: 0.4691 Epoch 3/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8736 - loss: 0.3423 - val_accuracy: 0.8711 - val_loss: 0.3604 Epoch 4/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8888 - loss: 0.3081 - val_accuracy: 0.8748 - val_loss: 0.3435 Epoch 5/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8915 - loss: 0.2884 - val_accuracy: 0.8784 - val_loss: 0.3379 Epoch 6/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8977 - loss: 0.2726 - val_accuracy: 0.8881 - val_loss: 0.3169 Epoch 7/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9043 - loss: 0.2569 - val_accuracy: 0.8750 - val_loss: 0.3556 Epoch 8/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9088 - loss: 0.2462 - val_accuracy: 0.8873 - val_loss: 0.3263 Epoch 9/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9119 - loss: 0.2353 - val_accuracy: 0.8866 - val_loss: 0.3228 Epoch 10/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9140 - loss: 0.2276 - val_accuracy: 0.8860 - val_loss: 0.3282 Epoch 11/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9156 - loss: 0.2227 - val_accuracy: 0.8898 - val_loss: 0.3210 Epoch 12/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9217 - loss: 0.2064 - val_accuracy: 0.8987 - val_loss: 0.2951 Epoch 13/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9281 - loss: 0.1961 - val_accuracy: 0.8903 - val_loss: 0.3319 Epoch 14/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9283 - loss: 0.1909 - val_accuracy: 0.8930 - val_loss: 0.3211 Epoch 15/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9284 - loss: 0.1889 - val_accuracy: 0.8936 - val_loss: 0.3271 Epoch 16/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9332 - loss: 0.1775 - val_accuracy: 0.8917 - val_loss: 0.3420 Epoch 17/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9341 - loss: 0.1705 - val_accuracy: 0.8940 - val_loss: 0.3323 Epoch 18/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9377 - loss: 0.1681 - val_accuracy: 0.8909 - val_loss: 0.3501 Epoch 19/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9383 - loss: 0.1667 - val_accuracy: 0.8964 - val_loss: 0.3300 Epoch 20/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9411 - loss: 0.1603 - val_accuracy: 0.8935 - val_loss: 0.3399 Epoch 21/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9426 - loss: 0.1508 - val_accuracy: 0.8917 - val_loss: 0.3659 Epoch 22/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9465 - loss: 0.1442 - val_accuracy: 0.9001 - val_loss: 0.3445 Epoch 23/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9487 - loss: 0.1404 - val_accuracy: 0.8884 - val_loss: 0.3860 Epoch 24/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9513 - loss: 0.1310 - val_accuracy: 0.8938 - val_loss: 0.3672 Epoch 25/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9489 - loss: 0.1350 - val_accuracy: 0.8892 - val_loss: 0.4078 Epoch 26/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9511 - loss: 0.1284 - val_accuracy: 0.8952 - val_loss: 0.3638 Epoch 27/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9531 - loss: 0.1247 - val_accuracy: 0.8972 - val_loss: 0.3792 Epoch 28/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9543 - loss: 0.1250 - val_accuracy: 0.8948 - val_loss: 0.3973 Epoch 29/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9516 - loss: 0.1277 - val_accuracy: 0.8963 - val_loss: 0.3971 Epoch 30/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9578 - loss: 0.1152 - val_accuracy: 0.8939 - val_loss: 0.4073 Epoch 31/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9565 - loss: 0.1144 - val_accuracy: 0.8908 - val_loss: 0.4319 Epoch 32/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9567 - loss: 0.1129 - val_accuracy: 0.8956 - val_loss: 0.4151 Epoch 33/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9587 - loss: 0.1068 - val_accuracy: 0.8975 - val_loss: 0.4264 Epoch 34/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9604 - loss: 0.1067 - val_accuracy: 0.8935 - val_loss: 0.4084 Epoch 35/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9608 - loss: 0.1033 - val_accuracy: 0.8951 - val_loss: 0.4397 Epoch 36/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9615 - loss: 0.1009 - val_accuracy: 0.8966 - val_loss: 0.4257 Epoch 37/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9625 - loss: 0.0987 - val_accuracy: 0.8963 - val_loss: 0.4224 Epoch 38/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.9637 - loss: 0.0934 - val_accuracy: 0.8967 - val_loss: 0.4279 Epoch 39/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9655 - loss: 0.0922 - val_accuracy: 0.8914 - val_loss: 0.4782 Epoch 40/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9654 - loss: 0.0924 - val_accuracy: 0.8929 - val_loss: 0.4544 Epoch 41/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9669 - loss: 0.0886 - val_accuracy: 0.8938 - val_loss: 0.4536 Epoch 42/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9690 - loss: 0.0858 - val_accuracy: 0.8991 - val_loss: 0.4427 Epoch 43/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9680 - loss: 0.0819 - val_accuracy: 0.8965 - val_loss: 0.4582 Epoch 44/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9697 - loss: 0.0797 - val_accuracy: 0.8942 - val_loss: 0.4719 Epoch 45/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9708 - loss: 0.0786 - val_accuracy: 0.8974 - val_loss: 0.4656 Epoch 46/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9709 - loss: 0.0796 - val_accuracy: 0.8978 - val_loss: 0.4845 Epoch 47/47 1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9705 - loss: 0.0763 - val_accuracy: 0.8975 - val_loss: 0.4939 <keras.src.callbacks.history.History at 0x7f0c987d8d30>
To finish this tutorial, evaluate the hypermodel on the test data.
eval_result = hypermodel.evaluate(img_test, label_test)
print("[test loss, test accuracy]:", eval_result)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.8869 - loss: 0.5397 [test loss, test accuracy]: [0.5349758863449097, 0.8899999856948853]
The my_dir/intro_to_kt
directory contains detailed logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional overwrite=True
argument while instantiating the tuner.
Summary
In this tutorial, you learned how to use the Keras Tuner to tune hyperparameters for a model. To learn more about the Keras Tuner, check out these additional resources:
Also check out the HParams Dashboard in TensorBoard to interactively tune your model hyperparameters.